Automated Trading Bot

Leveraging data, AI, and risk management for automated trading.

Project Overview

This project aims to build an automated trading bot with the following core components:

Integrating AI Without Paying

AI/ML is a core aspect, exploring free techniques:

Goal AI Technique (Free) Tools/Libraries Considerations
Predict Market Direction Time Series Forecasting (LSTM), Classification (XGBoost, Random Forest) TensorFlow/Keras, PyTorch, scikit-learn, XGBoost Requires feature engineering, risk of overfitting.
Detect Trade Setups Pattern Recognition (CNN on charts), Rule-based Logic TensorFlow/Keras, PyTorch, OpenCV Can be complex, data labeling is key.
Adapt to Market Regimes Reinforcement Learning (RL) Stable-Baselines3, Gymnasium Requires defining environment, reward function design is critical.
Optimize Strategy Parameters Genetic Algorithms, Grid Search, Bayesian Optimization DEAP, scikit-optimize, Custom implementations Can be computationally intensive, prone to local optima (GA).

Getting Started

To build and run the bot, follow these general steps:

Prerequisites

Installation

Clone the repository, create a virtual environment, and install dependencies from requirements.txt.

git clone <repository_url>
cd <repository_folder>
python -m venv venv
source venv/bin/activate  # On Windows use `venv\Scripts\activate`
pip install -r requirements.txt

Configuration

Obtain API keys (start with paper trading!) and configure strategy parameters. Store keys securely.

Running the Bot

Specific commands depend on implementation and the mode you want to run in. Ensure your configuration is set up correctly before running.

# Backtesting
python backtester/run_backtest.py --strategy <strategy_name> --config config/config.yaml --data data/historical_data.csv

# Paper Trading
python live_trading/run_paper_trading.py --strategy <strategy_name> --config config/config.yaml

# Live Trading (Use with extreme caution!)
python live_trading/run_live_trading.py --strategy <strategy_name> --config config/config.yaml

# Running Dashboard
streamlit run dashboard/dashboard.py

# Training an AI Model
python training/train_model.py --model <model_type> --config config/config.yaml --data data/training_data.csv

Project Structure

A well-organized project structure is vital for maintainability and scalability. The proposed structure aims for modularity and clear separation of concerns.

my_trading_bot/
├── backtester/
│   ├── __init__.py
│   └── run_backtest.py
├── config/
│   ├── __init__.py
│   └── config.yaml # Example configuration file
├── data/
│   ├── __init__.py
│   └── historical_data.csv # Example data file
├── core/
│   ├── __init__.py
│   ├── data_handler.py
│   ├── execution_handler.py
│   ├── risk_manager.py
│   └── signal_generator.py
├── live_trading/
│   ├── __init__.py
│   ├── run_paper_trading.py
│   └── run_live_trading.py
├── strategies/
│   ├── __init__.py
│   ├── base_strategy.py # Base class for strategies
│   ├── rsi_strategy.py # Example strategy
│   └── ml_strategy.py # Example ML-based strategy
├── tests/
│   ├── __init__.py
│   ├── test_data_handler.py
│   └── test_strategies.py
├── training/
│   ├── __init__.py
│   ├── train_model.py
│   └── models/ # Directory for trained models
├── dashboard/
│   ├── __init__.py
│   └── dashboard.py # Streamlit dashboard
├── .gitignore
├── README.md
├── requirements.txt
└── main.py # Optional entry point or orchestrator